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CS 267 Applications of Parallel Computers

Lecture 4:

More about
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and Programming

Bob Lucas

based on notes by J. Demmel and D. Culler

http://www.nersc.gov/~dhbailey/cs267
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Recap of Last Lecture

° There are several standard programming models (plus
variations) that were developed to support particular kinds of
architectures

• shared memory

• message passing

• data parallel

° The programming models are no longer strictly tied to
particular architectures, and so offer portability of correctness

° Portability of performance still depends on tuning for each
architecture

° In each model, parallel programming has 4 phases
• decomposition into parallel tasks

• assignment of tasks to threads

• orchestration of communication and synchronization among threads

• mapping threads to processors
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Outline

° Performance modeling and tradeoffs

° Shared memory architectures

° Shared memory programming
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Cost Modeling
and

 Performance
Tradeoffs
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Example

° s = f(A[1]) + … + f(A[n])f(A[1]) + … + f(A[n])

°° DecompositionDecomposition
•• computing each f(A[j])computing each f(A[j])

•• n-fold parallelism, where n may be >> pn-fold parallelism, where n may be >> p

•• computing sum scomputing sum s

°° AssignmentAssignment
•• thread k sums thread k sums sksk =  f(A[k*n/p]) +  … + f(A[(k+1)*n/p-1]) =  f(A[k*n/p]) +  … + f(A[(k+1)*n/p-1])

•• thread 1 sums s =  s1+ … +thread 1 sums s =  s1+ … + sp sp

--   for simplicity of this example, will be improvedfor simplicity of this example, will be improved

•• thread 1 communicates s to other threadsthread 1 communicates s to other threads

°° OrchestrationOrchestration
• starting up threads

• communicating, synchronizing with thread 1

° Mapping
• processor j  runs thread j
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Identifying enough Concurrency

° Amdahl’s law bounds speedup
• let s = the fraction of total work done sequentially

Simple Decomposition: 
 f ( A[i] ) is the parallel task

 sum is sequential
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Algorithmic Trade-offs

° Parallelize partial sum of the f’s
• what fraction of the computation is “sequential”

• what does this do for communication?  locality?

• what if you sum what you “own”

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p) )

1 x time(sum(p))



CS267  L4 Shared Memory.8 Lucas Sp 2000

Problem Size is Critical

° Total work= n + P

° Serial work: P

° Parallel work: n

° s = serial fraction

    = P/ (n+P)

° Speedup(P)=n/(n/P+P)

° Speedup decreases for

    large P if n small
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Algorithmic Trade-offs

° Parallelize the final summation (tree sum)
• Generalize Amdahl’s law for arbitrary “ideal” parallelism profile
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Shared Memory Architectures
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Recap Basic Shared Memory Architecture

P1 P2 Pn

network

$ $ $

memory

° Processors all connected to a large shared memory

° Local caches for each processor

° Cost: much cheaper to cache than main memory

°° Simplest to program, but hard to build with many processors Simplest to program, but hard to build with many processors
°° Now take a closer look at structure, costs, limits Now take a closer look at structure, costs, limits
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Limits of using Bus as Network

I/O MEM MEM° ° °

PROC

  cache

PROC

  cache

° ° °

Assume 100 MB/s bus

50 MIPS processor w/o cache

=> 200 MB/s inst BW per processor

=>  60 MB/s data BW at 30% load-store

Suppose 98% inst hit rate and 95%
data hit rate (16 byte block)

=>  4 MB/s inst BW per processor

=> 12 MB/s data BW per processor

=> 16 MB/s combined BW

∴∴∴∴  8 processors will saturate bus

Cache provides bandwidth filter
 – as well as reducing average access time

260 MB/s

16 MB/s
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Cache Coherence: The Semantic Problem

° p1 and p2 both have cached copies of x (as 0)

° p1 writes x=1 and then the flag, f=1, as a signal to other processors that it has
updated x

• writing f pulls it into p1’s cache

• both of these writes “write through” to memory

° p2 reads f (bringing it into p2’s cache) to see if it is 1, which it is

° p2 therefore reads x, expecting the value written by p1, but gets the “stale”
cached copy

x 1
f  1

x 0
f  1

x = 1
f  = 1

p1 p2

°° SMPs SMPs have complicated caches to enforce  coherence have complicated caches to enforce  coherence
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Programming SMPs

° Coherent view of shared memory

° All addresses equidistant
• don’t worry about data partitioning

° Caches automatically  replicate shared data close to processor

° If program concentrates on a block of the data set that no one
else updates => very fast

° Communication occurs only on cache misses
• cache misses are slow

° Processor cannot distinguish communication misses from
regular cache misses

° Cache block may introduce unnecessary communication
• two distinct variables in the same cache block

• false sharing
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Where are things going

° High-end
• collections of almost complete workstations/SMP on high-speed

network  (Millennium)

• with specialized communication assist integrated with memory
system to provide global access to shared data

° Mid-end
• almost all servers are bus-based CC SMPs

• high-end servers are replacing the bus with a network

- Sun Enterprise 10000, Cray SV1, HP/Convex SPP

- SGI Origin 2000

• volume approach is Pentium pro quadpack + SCI ring

- Sequent, Data General

° Low-end
• SMP desktop is here

° Major change ahead
• SMP on a chip as a building block
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° Creating parallelism in shared memory models

° Synchronization

° Building shared data structures

° Performance programming (throughout)

Programming Shared Memory MachinesProgramming Shared Memory Machines
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Programming with Threads

° Several Threads Libraries

° PTHREADS is the Posix Standard
• Solaris threads are very similar

• Relatively low level

• Portable but possibly slow

° P4 (Parmacs) is a widely used portable package
• Higher level than Pthreads

• http://www.netlib.org/p4/index.html

° OpenMP is new standard
• Support for scientific programming on shared memory

• Currently Fortran, C, and C++ interfaces

• H/W vendors include SGI, SUN, Compaq, IBM, HP, and Intel

• http://www.openMP.org
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Creating Parallelism
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Language Notions of Thread Creation

° cobegin/coend

° fork/join

° cobegin cleaner, but fork is more general

cobegin

    job1(a1);

    job2(a2);

coend

•Statements in block may run in parallel

•cobegins may be nested

•Scoped, so you cannot have a missing coend

tid1 = fork(job1, a1);

job2(a2);

join tid1; •Forked function runs in parallel with current

•join waits for completion (may be in different function)
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Loop Level Constructs in OpenMP
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Forking Threads in Solaris

° start_fun defines the thread body

° start_fun takes one argument of type void* and returns void*

° an argument can be passed as arg
• j-th thread gets arg=j so it knows who it is

° stack_base and stack_size give the stack
• standard default values

° flags controls various attributes
• standard default values for now

° new_tid thread id (for thread creator to identify threads)
° http://www.sun.com/workshop/threads/doc/MultithreadedProgrammingGuide_Solaris24.pdf

int thr_create(void *stack_base, size_t stack_size,

               void *(* start_func)(void *),

               void *arg, long flags, thread_t *new_tid)

thr_create(NULL, NULL, start_func, arg, NULL, &tid)
Example:

Signature:
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Synchronization
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Barrier -- global synchronization
• fork multiple copies of the same function “work”

- SPMD  “Single Program Multiple Data”

• simple use of barriers -- a threads hit the same one

• more complicated -- barriers on branches

• or in loops -- need equal number of barriers executed

• barriers are not provided in many thread libraries

- need to build them

Basic Types of Synchronization: Barrier

work_on_my_subgrid();

barrier;

read_neighboring_values();

barrier;

if (tid % 2 == 0) {

    work1();

    barrier

} else { barrier }
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Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
• threads are working mostly independently

• need to access common data structure

• Java and other languages have lexically scoped synchronization

- similar to cobegin/coend vs. fork and join

• Semaphores give guarantees on “fairness” in getting the lock, but
the same idea of mutual exclusion

• Locks only affect processors using them:

- pair-wise synchronization

lock *l = alloc_and_init();    /* shared */

acquire(l);

  access data

release(l);
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#define _REENTRANT
#include <synch.h>

/* Data Declarations    */

typedef struct {
        int     maxcnt;                 /* maximum number of runners    */
        struct _sb {
                cond_t  wait_cv;        /* cv for waiters at barrier    */
                mutex_t wait_lk;        /* mutex for waiters at barrier */
                int     runners;        /* number of running threads    */
        } sb[2];
        struct _sb      *sbp;           /* current sub-barrier          */
} barrier_t;

int barrier_init( ... int count, ... ) {
……

bp->maxcnt      = count;
……

}}

Barrier Implementation ExampleBarrier Implementation Example



CS267  L4 Shared Memory.26 Lucas Sp 2000

int barrier_wait( register barrier_t *bp ) {
. . .
        mutex_lock( &sbp->wait_lk );

        if ( sbp->runners == 1 ) {      /* last thread to reach barrier */
                if ( bp->maxcnt != 1 ) {
                        /* reset runner count and switch sub-barriers   */
                        sbp->runners    = bp->maxcnt;
                        bp->sbp         = ( bp->sbp == &bp->sb[0] )? &bp->sb[1] : &bp->sb[0];

                                        /* wake up the waiters          */
                        cond_broadcast( &sbp->wait_cv );
                }
        } else {
                sbp->runners--;         /* one less runner              */
                while ( sbp->runners != bp->maxcnt )
                        cond_wait( &sbp->wait_cv, &sbp->wait_lk );
        }
        mutex_unlock( &sbp->wait_lk );
}}

Barrier Implementation Example (Barrier Implementation Example (ContCont))
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Sharks and FishSharks and Fish

http://www.cs.berkeley.edu/~demmel/cs267/Sharks_and_Fish/

is missing … we’ll find it
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More Information on OpenMP

www.openmp.org


